
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 5, OCTOBER 2019 1973

Cost-Efficient Scheduling of Bulk Transfers
in Inter-Datacenter WANs

Zhenjie Yang , Yong Cui , Xin Wang , Yadong Liu, Minming Li , Shihan Xiao, and Chuming Li

Abstract— With the quick growth of traffic between data
centers, inefficient transfer scheduling in inter-datacenter net-
works can lead to a huge waste of bandwidth thus significant
bandwidth cost. Previous work have explored different ways, such
as software-defined WANs and dynamic pricing mechanisms, to
overcome the inefficiency of inter-datacenter networks. However,
there is a big challenge in addressing the fundamental conflicts
between the deadline-aware transfer scheduling and minimizing
the bandwidth cost. Unlike existing efforts that schedule inter-
datacenter transfers under fixed link capacities, wherein some
deadlines are violated and the service quality is degraded, we
aim to finish all the transfers on time with as little bandwidth as
possible to minimize the bandwidth cost. We take into account the
variation of bandwidth price and the deadline requirements of
services, and formulate the problem of cost-efficient scheduling
of bulk transfers with deadline guarantee, which is shown to
be NP-hard. Benefitting from the relax-and-round method, we
propose a progressively-descending algorithm (PDA) to schedule
bulk transfers and meet the above goals with a guaranteed
approximation ratio. We apply our algorithm in a bulk transfer
scheduler, Butler, and build a small-scale testbed to evaluate its
efficiency. Both large-scale simulation and testbed experiment
results validate the ability of our scheme on cutting down the
bandwidth cost. Compared with existing approaches, it reduces
up to 60% bandwidth cost and increases the network utilization
by up to 140%.

Index Terms— Inter-datacenter WAN, cost, scheduling.

I. INTRODUCTION

MANY online service providers and cloud platform
providers own data centers across different geographic

zones and run globally-distributed applications in their data

Manuscript received December 24, 2018; accepted July 30, 2019; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor S. Uhlig. Date of
publication August 26, 2019; date of current version October 15, 2019. This
work was supported in part by the National Key R&D Program of China
under Grant 2018YFB1800303 and in part by the NSFC Project under Grant
61872211. The work of Z. Yang was supported by the China Scholarship
Council under Grant 201806210244. The work of X. Wang was supported by
the NSF CNS under Grant 1526843. The work of M. Li was supported in
part by the Research Grants Council of the Hong Kong Special Administrative
Region, China, under Grant CityU 11268616 and in part by the NSFC under
Grant 11771365. (Corresponding author: Yong Cui.)

Z. Yang, Y. Cui, Y. Liu, and C. Li are with the Department of
Computer Science and Technology, Tsinghua University, Beijing 100084,
China (e-mail: yangzj15@mails.tsinghua.edu.cn; cuiyong@tsinghua.edu.cn;
lichuming.lcm@gmail.com; liuyd17@mails.tsinghua.edu.cn).

X. Wang is with the Department of Electrical and Computer Engi-
neering, Stony Brook University, Stony Brook, NY 11790 USA (e-mail:
x.wang@stonybrook.edu).

M. Li is with the Department of Computer Science, City University of
Hong Kong, Hong Kong, and also with the Shenzhen Research Institute, City
University of Hong Kong, Hong Kong (e-mail: minming.li@cityu.edu.hk).

S. Xiao is with Huawei Technologies Co., Ltd., Beijing 100080, China
(e-mail: xiaoshihan@huawei.com).

Digital Object Identifier 10.1109/TNET.2019.2934896

centers [1]–[7]. Inter-datacenter wide area network (Inter-
DC WAN) is the critical infrastructure to connect these geo-
graphically distributed data centers. Except for the providers
that build dedicated lines between their data centers [2],
[3], [8], service providers generally need to lease bandwidth
from Internet service providers (ISPs) to deliver the traf-
fic among data centers over Inter-DC WAN. Typically, the
bandwidth is sold at a fixed price per unit (e.g., 10Gbps
and 40Gbps) [2], [9], [10] with the price varying across
different regions of the world [11]. The bandwidth usage is
calculated over a fixed billing cycle, such as a day, a week
or a month [9], [12]. Generally, data center operators pay
hundreds of millions of dollars per year to ISPs for traffic
delivery over their WANs [2], [3], [8]. As reported in [13],
the network cost accounts for 15% of the total expenditure in
data centers, which is comparable to the power cost in data
centers [14].

Data center operators, however, are not able to gain the full
return from their investments. Even for the very busy links,
the average link utilization is only 40-60% [2]. In most cases,
there is no coordination among transmissions from different
services over the same Inter-DC WAN, and data is sent across
the network whenever available and as much as the services
need. This kind of “casual” scheduling of Inter-DC transfers
gives rise to a tremendous wastage of bandwidth resources and
incurs a high bandwidth cost for data center operators [2], [3].

Traffics over Inter-DC WAN are generated by various
globally-distributed applications. Among all the data deliv-
ered over Inter-DC WAN, bulk transfers have large sizes
(e.g., several TBs to PBs) and account for a large pro-
portion (e.g., 85-95% [4], [15]) of the total traffic. There
are various types of bulk transfers in Inter-DC WANs. As
some typical examples, search engines synchronize search
indices across all data centers periodically [3], [16], [17];
Financial institutions back up their daily transaction records in
remote sites every trading day [15]; Video content publishers
release the latest videos across geographical regions to viewers
[18]–[20]. Bulk transfers have relative long deadlines, e.g.,
several hours to days [15]. Transmitting the data timely and
meeting the expected deadlines of services are essential for
service providers to win the business. As a large fraction
of the traffic in Inter-DC WANs is bulk transfer with long
deadline, there is a great potential for data center operators to
cut down the bandwidth cost with the efficient scheduling of
bulk transfers.

Data center operators face two challenges in scheduling bulk
transfers over Inter-DC WANs: (1) Transferring bulk transfers
in non-peak hours vs. Guaranteing their deadlines. As bulk

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:01:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2570-1167
https://orcid.org/0000-0002-5171-739X
https://orcid.org/0000-0001-8639-3818
https://orcid.org/0000-0002-7370-6237

1974 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 5, OCTOBER 2019

transfers have long deadlines, data center operators could wait
and send them in non-peak hours to lower the bandwidth
usage, but at the risk of violating their deadlines. (2) Making
full use of complete units of bandwidth. As ISPs sell Inter-DC
bandwidth in high prices per unit, which is typically 10Gbps
and 40Gbps [10], scheduling bulk transfers to fully use the
purchased units of bandwidth is essential for cutting down the
total bandwidth cost. Bandwidth prices are largely different
across the world, e.g., the highest bandwidth price is up to
21.3 times higher than the lowest one [21], further increasing
the difficulty of transferring bulk data with less bandwidth
cost. For data center operators, it is hard to determine at
what rate and on which path to send data could meet the
requirements of bandwidth cost and the deadlines of bulk
transfers simultaneously.

Recently, various efforts have been made to improve the net-
work utilization or cost efficiency of Inter-DC WANs. Existing
solutions often attempt to improve the network utilization
without considering the transmission cost and deadline [2],
[3], [16] or only consider the deadline [4]. As there is a large
proportion of bulk data in Inter-DC WANs and the cost of
Inter-DC transfers is high, some solutions equip data centers
with large storages and adopt the store-and-forward approach
to schedule bulk transfers [8], [22], which lead to high storage
costs for data center operators. Overall, service providers are
caught in a dilemma when to apply which of these solutions
in real systems.

In this work, we take the initiative to efficiently schedule
bulk transfers with low bandwidth cost while guaranteeing
their deadlines. To achieve the goal, we formulate the problem
of cost-efficient scheduling of bulk transfers (CESBT), taking
into account the difference in bandwidth prices and the integer
property of bandwidth charging. We show our problem is NP-
hard, and propose a progressively-descending algorithm (PDA)
that is derived from the relax-and-round technique to schedule
bulk transfers in cost-efficient manner while guaranteeing the
deadlines with a guaranteed approximation ratio. We apply
PDA to the popular architecture of software-defined Inter-
DC WAN, and design a bulk transfer scheduler, Butler, for
Inter-DC WANs. To evaluate the effectiveness of our scheme,
besides simulations, we implement Butler and test its perfor-
mance over a small-scale testbed. Following [4], [9], [15],
we generate workload with a synthetic model and the arrival
rate of bulk transfer requests follows Poisson distribution. Our
extensive simulations and testbed results demonstrate that our
scheme can reduce more than half the bandwidth cost annually
for data center operators.

The remainder of this paper is organized as follows: The
background and motivation are presented in Section II. The
formulation of CESBT and PDA is introduced in Section III.
The Butler is introduced in Section IV. The evaluation results
are presented in Section V, followed by the related work in
Section VI and the conclusion in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the basic architecture of
software-defined Inter-DC WAN and give a motivating

Fig. 1. Software-defined Inter-DC WAN.

example to show the advantages of optimizing the scheduling
of Inter-DC transfers.

A. Software-Defined Inter-DC WAN

Nowadays, emerging applications and operational scenar-
ios raise exacting requirements on data transmission inside
clouds [23]. As SDN shows great promise in construct-
ing high-performance networks, to satisfy the strict require-
ments posed by cloud services, many data center operators
exploit SDN technologies to efficiently schedule transfers over
Inter-DC WANs, also known as software-defined Inter-DC
WAN [2]–[4], [23]. Fig. 1 shows a typical architecture of
software-defined Inter-DC WANs. Besides data centers and
links, to facilitate the use of SDN, it includes a controller
and multiple brokers each associated with a data center.
Typically, the controller is responsible for scheduling transfers
and handling errors. Brokers send the flow information and
network status to the controller to determine the schedule
of transfers, and enforce rate allocation inside data centers
following the instruction of the controller. In software-defined
Inter-DC WANs, control flows are applied to exchange mes-
sages between the controller and brokers, and data flows carry
the data generated by services.

B. Motivating Example

As a large fraction of the traffic in Inter-DC WANs is
bulk transfer with long deadline, optimizing bulk transfers has
a great potential for data center operators to cut down the
bandwidth cost. We give an example to show the advantage. In
Fig. 2a, the Inter-DC WAN connects three data centers (DC1,
DC2 and DC3) with three bidirectional links (link1, link2 and
link3). In Fig. 2b, three bulk transfers R1, R2 and R3 are
associated with different arrival time (arr.), deadlines (ddl.)
and demands (dem.), with X → Y indicating the transfer
of data from DC-X to DC-Y . Generally, the bandwidth price
(i.e., the cost per unit of bandwidth) varies with links [11] and
the bandwidth cost is equal to the product of the bandwidth
consumed in one billing cycle and the bandwidth price [24].
In our example, the billing cycle is set to be between the slots
1 and 10. Fig. 2c gives bandwidth prices on different links.

We adopt three scheduling solutions to finish these transfers
on time and compare their total bandwidth costs. In Fig. 2d,

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:01:54 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: COST-EFFICIENT SCHEDULING OF BULK TRANSFERS IN INTER-DATACENTER WANs 1975

Fig. 2. Example: comparing different scheduling solutions.

Shortest-Path-First (SPF) delivers each transfer on the shortest
path. It delivers R1, R2 and R3 on the paths “DC3-DC1”,
“DC2-DC1” and “DC3-DC2”, with the transmission rate equal
to the transfer demand divided by the maximum tolerable
transfer time [22]. According to Fig. 2b, the desired trans-
mission rates of R1, R2 and R3 are 1, 2 and 2 respectively.
Thus the bandwidth consumed on link1, link2 and link3 is 2,
2 and 1. Multiplied by the bandwidth prices, the total cost
is 2 ∗ 1 + 2 ∗ 2 + 1 ∗ 4 = 10. In Fig. 2e, Cheapest-Path-
First (CPF) delivers each transfer on the path with the lowest
bandwidth price. It delivers R1, R2 and R3 on the paths “DC3-
DC2-DC1”, “DC2-DC1” and “DC3-DC2” respectively. As the
desired transmission rates of R1, R2 and R3 are 1, 2 and 2,
the bandwidth consumed on link1 and link2 is 3 and 3, and
the total cost is 3 ∗ 1 + 3 ∗ 2 = 9, which is slightly lower than
that of SPF.

Different from the above solutions, Cost-Aware (CA) sched-
ules these transfers with the least bandwidth cost. As R1 has
a longer deadline than R2 and R3 and it can use the links that
deliver R2 and R3, CA selects the paths “DC3-DC2-DC1”,
“DC2-DC1” and “DC3-DC2” for R1, R2 and R3 respectively.
It starts to deliver R1 after R2 and R3 have already finished.
By this way, CA sends R2 and R3 at the rate of 2 between
time slots 1 and 5 and sends R1 at the rate of 2 between time
slots 6 and 10. In this case, the bandwidth consumed on link1
and link2 is 2 and 2, and the total cost is only 2∗1+2∗2 = 6.
Compared with SPF and CPF, CA reduces the bandwidth cost
by 40% and 33% respectively. This demonstrates the benefit
of optimally scheduling the transfers over Inter-DC WANs to
reduce the bandwidth cost.

III. COST-EFFICIENT SCHEDULING OF BULK TRANSFERS

In this section, we first formulate the problem of CESBT
and prove its NP-hardness. Then we present the design details
of our algorithm and prove its approximation ratio.

A. Problem Formulation

Before our formulation, we introduce the necessary defini-
tions and notations related with our goal in the following:

1) Inter-DC WAN: The network topology is represented as
a directed graph G = (V, E), where V denotes the set of
data centers and E denotes the set of links. Each link e ∈ E
denotes a directed link between a data center pair.

2) Bandwidth Cost: We consider a billing cycle consisting
of |T | independent time slots, denoted as T = {1, . . . , |T |}.
According to [22], [24], the bandwidth cost of link e is a
non-decreasing function of the bandwidth charge ce, which is
an integer in practice [9]. If per unit bandwidth on link e is
charged at ue, the cost of e can be calculated as the product
of ue and ce [22], [24].

3) Bulk Transfer: In a billing cycle, there are multiple
bulk transfer requests, each of which is specified by fi =
{si, ti, di, ai, τi}, where si, ti ∈ V , si �= ti, ai, τi ∈ T ,
ai ≤ τi. A bulk transfer fi arriving at time slot ai with the
traffic demand di is requested to be sent from the source data
center si to the destination data center ti before its deadline
τi. The maximum tolerable transfer time of fi is defined as
the duration between its start time ai and its deadline τi. We
use F = {f1, . . . , fn} to denote the set of bulk transfers, and
I = {1, . . . , n} to denote the index set of F . We use fi and i
to denote the i-th bulk transfer interchangeably.

In our formulation of Cost-Efficient Scheduling of Bulk
Transfers (CESBT) over Inter-DC WAN, the objective is
formally expressed as:

min
∑
e∈E

ue × ce

which is subject to the following constraints:
4) Flow Conservation Constraints: For any bulk transfer

i ∈ I with the flow fi, if a data center is neither its source
si nor its destination ti, the volume of outgoing traffic of fi

should be equal to its incoming traffic. Let xi
e(t) denote the

volume of the part of traffic of fi that transmits through the
link e in the time slot t, then we have
∀i ∈ I, v ∈ V \{si, ti}, t ∈ [ai, τi] :

∑
e∈δ−(v)

xi
e(t) −

∑
e∈δ+(v)

xi
e(t) = 0 (1)

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:01:54 UTC from IEEE Xplore. Restrictions apply.

1976 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 5, OCTOBER 2019

TABLE I

NOTATIONS AND DEFINITIONS

where δ−(v) and δ+(v) denote the set of incoming links and
outgoing links of data center v, respectively. For clarity, we
summarize the notations to use in this section in Table I.

5) Transmission Time Constraints: For any bulk transfer fi

(i ∈ I) with the demand di, in order to complete the transfer
without violating its deadline, the volume of the outgoing
traffic from its source si between its arrival time ai and its
deadline τi should be equal to di. Similarly, the volume of
incoming traffic of fi to its destination ti during ai and τi

should be equal to di. Thus, the following constraints should
be satisfied:∑

t∈[ai,τi]

(
∑

e∈δ+(si)

xi
e(t) −

∑
e∈δ−(si)

xi
e(t)) = di, ∀i ∈ I (2)

∑
t∈[ai,τi]

(
∑

e∈δ−(ti)

xi
e(t) −

∑
e∈δ+(ti)

xi
e(t)) = di, ∀i ∈ I (3)

Considering each transfer could be routed along multiple
paths, we assume existing techniques such as [25] and [26]
can solve the problem with possible packet-level reordering.

6) Bandwidth Charge Constraints: For any link e ∈ E, its
bandwidth charge ce allows for the transferring of ||ce|| units
in one time slot, which should be equal to or greater than the
volume transferred in any time slot:

∑
i∈I

xi
e(t) ≤ ||ce||, ∀e ∈ E, t ∈ T (4)

For simplicity, we denote the total bandwidth cost as M :

M �
∑
e∈E

ue × ce.

Thus our optimization goal is as follows:

min M (5)

s.t. (1), (2), (3), (4)
xi

e(t) ≥ 0, for all i, e, t (6)

ce ∈ Z
+, for all e (7)

Different from the previous work [2]–[4], [16] that attempts
to improve the network utilization without considering the
transmission cost and deadline or only consider the deadline,
we take into account the service performance and operation
expenditure simultaneously in our formulation, and aim to
efficiently schedule bulk transfers with low bandwidth cost
while guaranteeing their deadlines. By reducing the minimum
cost capacity installation (MCCI) problem [27] to a special
case of CESBT, we obtain the following theorem:

Theorem 1: CESBT is NP-hard.
Proof: CESBT contains the MCCI problem as a special

case, which is known to be strongly NP-hard in general
graphs [27]. Consider a directed graph G = (V, E), where
V denotes the set of nodes and E denotes the set of links.
Given a set of demands {dk|k = 1, . . . ,K}, each of which
specified by an ordered pair of nodes (sk, tk), sk, tk ∈ V and
sk �= tk, each pair (sk, tk) corresponds to a commodity flow
to be sent from the source node sk to the destination node tk
using links in E. The MCCI problem can be defined as:

min
∑

eij∈E
c∗ij · y∗

ij

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j xk

ji −
∑

j xk
ij = dk, i = tk, ∀k∑

j xk
ji −

∑
j xk

ij = 0, i /∈ {sk, tk}, ∀k∑
k∈[1,K] x

k
ij ≤ y∗

ij , ∀eij ∈ E

xk
ij ≥ 0, y∗

ij ∈ N+, ∀eij ∈ E

where y∗
ij denotes the capacity requirement on eij , which is

the directed link from i to j, c∗ij denotes the cost of obtaining
one unit of capacity on eij , and xk

ij denotes the amount of the
k-th transfer flowing through eij . The objective of the MCCI
problem is to obtain a minimum cost installation of capacities
to ensure that all commodities can be shipped simultaneously.

To transform the MCCI problem to a special instance of
CESBT, we first construct a special input of CESBT. Consider
that all bulk transfers arrive at the beginning of the first
time slot, and they must be finished in the end of the first
time interval, i.e., ∀fi ∈ F, ai = 1, τi = 1. For each link
eij ∈ E, we consider setting the unit price of capacity ue in
the original problem as the unit capacity cost c∗ij in the MCCI
problem, where e is the link from i to j, then ue = c∗ij . After
these settings in polynomial time, an instance of CESBT is
constructed. If we can solve CESBT with a polynomial time
algorithm, we would obtain the required bandwidth for each
link, which is equal to the unit number of capacity in the
MCCI problem. In this way, the MCCI problem can also be
solved. Therefore, CESBT is at least as hard as the MCCI
problem, which is known to be NP-hard. This completes the
proof.

Since CESBT is NP-hard, there exists no efficient way to
find the optimal solution in the polynomial time. As it concerns
us, one important question is: can we develop a polynomial-
time algorithm to solve CESBT with a guaranteed approxima-
tion ratio? The key challenges come from the integer nature
of the bandwidth charge for each link, the continuous nature
of the volume transferred, and their coupling. Specifically, the
bandwidth charge ce is related to both the design objective, i.e.,
minimize bandwidth cost, and the transferred volume variable

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:01:54 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: COST-EFFICIENT SCHEDULING OF BULK TRANSFERS IN INTER-DATACENTER WANs 1977

xi
e(t), which makes it difficult to obtain good result with a

reasonable amount of computational time and memory.

B. Algorithm Design

To answer the above question, we propose a progressively-
descending algorithm (PDA) to schedule the bulk transfers
in a billing cycle. It is run for several rounds following
a rounding strategy to reduce the bandwidth cost. There
are two important parameters, rounding-depth (R-Depth) and
rounding-span (R-Span), in PDA to determine the bandwidths
to charge for different links in each time slot. R-Depth limits
the number of rounds to run, and R-Span limits the number of
fractional numbers (each representing a charging bandwidth)
to be rounded each time and serves as a rounding strategy.
Both of them are positive and set by data center operators
according to actual needs before running PDA. For simplicity,
we use J and K to denote R-Depth and R-Span respectively.
Our algorithm consists of four basic operations as follows:

1) Relaxation: In each time slot, we have a list of bulk
transfers to be scheduled. Our goal is to determine the trans-
ferring that can be carried out and the bandwidth to charge
over each link. Since bandwidth for charging is an integer
in practice, we first relax the integer constraints to linear
ones, and make (5) solvable in polynomial time. The relaxed
problem is called “Relaxed-CESBT”.

2) Initialization: We solve Relaxed-CESBT, and obtain a
list of fractional charging bandwidths. When we round up all
of them, we can easily obtain the upper bound of M , which
we set as the initial value of M .

3) Rounding: Among all the obtained fractional charging
bandwidths in Initialization, we select K charging bandwidths
that are closest to their round-up or round-down, and call
them “candidates”. We round these candidates to their nearest
integers, i.e., their round-up or round-down.

4) Fixing: We fix the values of candidates and solve
Relaxed-CESBT to find the optimal values on the bandwidth
to charge for each link and the transfer allocation. We round
the fractional bandwidth for charging to their round-up, and
calculate the bandwidth cost, denoted as obj. If it is lower than
M , we update M with obj and carry out Rounding and Fixing
in the same way. Otherwise, we remove the first candidate and
recover it to its original value. Then we select a new candidate
for K and solve Relaxed-CESBT once again.

Before stopping the iterations in PDA, we will repeat the
above operations for J rounds, unless the bandwidth cost has
not been lowered in a complete round. When PDA is running,
we use a counter to record the number of rounds. It is set to
zero at the beginning of PDA. We show the pseudocode of
PDA in Algorithm 1 and prove its approximation ratio in the
following subsection. As the objective of PDA is to use less
bandwidth to transfer data across data centers, it can be also
used in the clouds where data center operators run their own
backbone and have invested the capital for a fixed backbone.
By running with our algorithm, they can get more available
bandwidth for other transfers and applications.

Algorithm 1 PDA: Progressively-Descending Algorithm
Input: F : the set of bulk transfers; G: the topology of

network; {ue}: the set of bandwidth prices;
Output: the rate allocations of each transfer {xi

e(t)}; the
charging bandwidths of links {ce};

1 Relax the integer constraints of (5);
2 Initialize M and counter;
3 while counter is less than J do
4 Round K candidates;
5 Fix the candidates, and calculate obj;
6 if obj < M then
7 Update M and counter;
8 else
9 Update candidates;

10 end
11 if no candidate is available then
12 Break;
13 end
14 end
15 return rate allocations and charging bandwidths

TABLE II

NOTATIONS AND DESCRIPTIONS OF PROBLEMS

C. Algorithm Analysis

In this subsection, we will prove the approximation ratio of
PDA. For simplicity, we denote the original CESBT problem
as P0 and the relaxed-CESBT problem as P1. We further relax
the relaxed-CESBT problem and obtain a new problem P2

as follows: for each bulk transfer i ∈ I , its arrival time ai

equals 1, and deadline τi equals |T |. We denote the optimal
bandwidth cost of P2 as Ω3. For clarity, we list all the related
problems in Table II.

For each bulk transfer i ∈ I , there may be multiple available
routing paths between si and ti, and the cost of per unit of
bandwidth on the path pi is represented as

U i
pi

�
∑
e∈pi

ue

Let p∗i denote the path with the minimum cost of unit
bandwidth (termed “min-cost routing path”), and vi denote
the average bandwidth that i requires in problem P2, i.e.,

vi =
di

||T || ,

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:01:54 UTC from IEEE Xplore. Restrictions apply.

1978 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 5, OCTOBER 2019

where di denotes the size of i and ||T || represents the duration
of a billing cycle. Then we have the lemma below:

Lemma 1: Ω3 =
∑

i∈I(U
i
p∗

i
× vi).

Proof: For each bulk transfer i ∈ I , let Si denote the
set of paths between si and ti. For any feasible solution of
problem P2, let E denote the links used by this solution, we
have the bandwidth cost as:

M =
∑

e∈E

ue max
t

∑
i∈I

||xi
e(t)||

≥
∑

e∈E

ue

∑
i∈I

∑
t∈T

||xi
e(t)||
|T |

=
∑

e∈E

ue

∑
i∈I

||xi
e||

=
∑
i∈I

∑

e∈E

ue||xi
e||

where ||xi
e(t)|| denotes the sending rate of i at time t on link e.

Its value is equal to that of xi
e(t). We use ||xi

e|| to denote
the average sending rate of i on link e in the billing cycle.
Similarly, we denote ||xi

p|| as the average sending rate of i on
path p in the billing cycle. Based on the above definitions, we
have

∑
i∈I

∑

e∈E

ue||xi
e|| =

∑
i∈I

∑
p∈Si

U i
p||xi

p||

≥
∑
i∈I

∑
p∈Si

U i
p∗

i
||xi

p||

=
∑
i∈I

U i
p∗

i

∑
p∈Si

||xi
p||

=
∑
i∈I

U i
p∗

i

di

||T ||
Thus the following inequations:

M ≥
∑
i∈I

∑
p∈Si

U i
p × ||xi

p(t)||

≥
∑
i∈I

U i
p∗

i
× vi

hold, and the optimal solution Ω3 of P2 is
∑

i∈I(U
i
p∗

i
× vi).

This completes the proof.
Based on Lemma 1, the optimal solution of problem P2

can be achieved by setting the sending rate of each transfer
as di/||T || and selecting the min-cost routing path for each
transfer.

We define the interesting subset of links as E∗: for arbitrary
link e ∈ E, if e is in the min-cost routing path of an ordered
pair of nodes (s, t), s, t ∈ V , then e ∈ E∗. Based on the
definition, we have the following lemma:

Lemma 2: If there exist bulk transfers between any ordered
pair of nodes (s,t), s, t ∈ V , and the set of links used in
the optimal solution of P2 are denoted as E′, then we have
E′ = E∗.

Proof: For arbitrary link e ∈ E′, there exists at least one
bulk transfer i ∈ I to make e in the min-cost routing path of
itself, i.e., e is in the min-cost routing path of (si, ti), e ∈ E∗

holds, thus E′ ⊆ E∗ holds.

For arbitrary link e ∈ E∗, there exists at least an ordered
pair of nodes (s, t) to make e in the min-cost path of s and t.
Meanwhile, there exists at least one bulk transfer i whose
source is s and destination is t, i.e., si = s and ti = t. Then
e ∈ E′ holds, thus E∗ ⊆ E′.

Since E′ ⊆ E∗ and E∗ ⊆ E′ hold simultaneously, E′ = E∗

holds. This completes the proof.
Lemma 3: If the set of links used in the optimal solution of

P1 are denoted as Ê, then we have Ê ⊆ E∗.
Proof: For arbitrary link e ∈ Ê but e /∈ E∗, e is not in

the min-cost routing path of any ordered pair of nodes (s, t).
Without loss of generality, e connects the source node se and
the destination node te. There exists a routing path p whose
cost is lower than e and connects se and te. Transferring all
the traffic flowing through e to p will reduce the total cost, thus
obtain a better solution, which conflicts with the statement that
Ê is the set of links used in the optimal solution of P1. Hence
there is no link that belongs to Ê but not E∗, and Ê ⊆ E∗

holds. This completes the proof.
Combining Lemma 1, 2 and 3, we prove the approximation

ratio of PDA and show the following theorem:
Theorem 2: Let R denote the approximation ratio between

the bandwidth cost obtained by PDA and the optimal one and
U denote the unit of bandwidth, then

R < 1 + max
i∈I

U

vi

holds.
Proof: With the definitions of Ω0, Ω2 and Ω3 in Table II,

we denote the bandwidth cost obtained by PDA as Ω1, and
the bandwidth cost derived from rounding up the fractional
bandwidth for charging in the optimal solution of P2 as Ω2.
The link set that corresponds to Ω2 is denoted by Ê and the
link set that corresponds to Ω3 is denoted by E′. It is easy to
prove that

Ω2

Ω0
≤ 1

and

Ω1

Ω0
≤ Ω2

Ω0

hold. Based on the definitions of Ω2 and Ω2, we have

Ω1

Ω0
<

Ω2

Ω0
+

∑
e∈Ê ue × U

Ω0

≤ 1 +
∑

e∈Ê ue × U

Ω0

≤ 1 +
∑

e∈Ê ue × U

Ω3

= 1 +
∑

e∈Ê ue × U∑
i∈I(vi × U i

p∗
i
)

≤ 1 + max
i∈I

U

vi

∑
e∈Ê ue∑
i∈I U i

p∗
i

According to Lemma 2 and Lemma 3, we have

Ê ⊆ E′

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:01:54 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: COST-EFFICIENT SCHEDULING OF BULK TRANSFERS IN INTER-DATACENTER WANs 1979

Fig. 3. System overview of Butler.

Then it can be easily proved that
∑

e∈Ê

ue ≤
∑
i∈I

U i
p∗

i

Thus, the inequality

R =
Ω1

Ω0
< 1 + max

i∈I

U

vi

holds. This completes the proof.
Typically, the duration of a billing cycle is one day or one

week, i.e., several tens of thousands or hundreds of thousands
of seconds [9]. Since the demand of a bulk transfer is in the
order of TB or PB [15], the size of i can be hundreds of
millions of GBs. The value is potentially up to four orders of
magnitude higher than that of the duration of a billing cycle.
As vi would be very large, we expect that PDA could achieve
a tight approximation ratio against the optimal solution.

IV. BUTLER: A BULK TRANSFER SCHEDULER

Following the architecture of software-defined Inter-DC
WANs as shown in Fig. 1, we design a system with PDA to
schedule the bulk transfers cost-efficiently in Inter-DC WANs
and we call it “Butler” (i.e., the abbreviation of Bulk transfer
scheduler).

A. Overview

Butler is a centralized system to economically schedule
the bulk transfers over Inter-DC WANs. As shown in Fig. 3,
the functions of Butler are divided into two logical planes:
cloud-service plane and Internet-service plane. The cloud-
service plane is in charge of the scheduling of bulk transfers
and transfers of interactive traffic. The Internet-service plane
provides the cloud-service plane with bandwidth and charges.
With the facilitation of Butler, data center operators could
ignore the implementation details of the Internet-service plane
(or Inter-DC WAN), while ISPs just need to operate on

the Internet-service plane without considering the detailed
contents transferring between data centers.

Butler consists of a controller and multiple brokers. Each
data center is equipped with a broker. It implements a strict
bandwidth sharing policy by giving the interactive traffic
the highest priority in transmission. The controller maintains
the global information about the network, and is responsible
for scheduling bulk transfers and handling errors. For fault-
tolerance, data center operators could replicate controllers and
place them in different data centers, with one elected as the
master through Paxos [28]. Since ISPs need to record the
bandwidth usages every 5 minutes, also called scheduling
period, to calculate bandwidth cost [12], brokers in data
centers periodically submit the volume of interactive traffic
predicted and the bulk transfers requested to the controller to
allocate the transmission bandwidth. It is noteworthy that the
volume of the interactive traffic can be well predicted for short
transmission period such as 5-minute [2], [4].

A broker has three modules: (1) Traffic Predictor (TP),
which predicts the volume of interactive traffic in the next
scheduling period; (2) Request Collector (RC), which collects
the transmission requests; (3) Rate Allocator (RA), which
enforces the rate allocation following the instruction of the
controller. A controller has two modules: Bulk Transfer Sched-
uler (BS) and Error Handler (RH), which are responsible for
finding the schedule of bulk transfers and handling various
errors (e.g., link failures and mispredictions). Butler works as
follows: in a typical scheduling period, applications submit
bulk transfer requests to RC, which forwards these requests
to BS of the controller at the end of this scheduling period.
The schedule determined by the controller is sent to RA to
execute in the next scheduling period. Considering the latency-
sensitive characteristic of interactive traffic, it is predicted
and scheduled in brokers, while the information on the traffic
volume is forwarded to the controller. BS runs in every time
slot to fit the predictable window of interactive traffic. It
schedules the bulk transfers with the minimal bandwidth cost,
taking into account the required bandwidths of interactive
traffic and various network states, e.g., link failures. Any newly
arrived bulk transfer can be scheduled to transfer within a
scheduling period, and the waiting is negligible compared with
its long duration in the unit of hours to days.

B. Broker

The design details of the modules in brokers are presented
as follows:

1) Traffic Predictor (TP): Since interactive traffic in Inter-
DC WANs is bursty and highly diurnal, it sometimes causes
high traffic volumes on links for a few time slots, resulting
in high bandwidth cost for data center operators. To han-
dle interactive traffic properly, TP predicts the demand of
interactive traffic based on the average usage of interactive
services in the last five minutes [2], [4]. To mitigate the loss
caused by misprediction, the mispredictions in past time slots
are also taken into consideration in the prediction process.
For the predicted interactive requests, TP will determine the
routing paths and the traffic volumes of all links traveled.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:01:54 UTC from IEEE Xplore. Restrictions apply.

1980 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 5, OCTOBER 2019

It sends the routing paths for predicted interactive requests
and the traffic volume information to the controller every time
slot for it to consider when scheduling the bulk transfers.
It also sends similar information to RA for it to efficiently
schedule interactive requests according to the path and volume
information given.

2) Request Collector (RC): In a data center, applications
submit their Inter-DC bulk transfer requests to RC. Each
request contains the necessary information: source, destina-
tion, start time, maximum transmission time and transfer
demand. We have introduced how Butler schedules the transfer
in a single billing cycle. If a request spreads across two or
more billing cycles, we divide it into multiple parts based on its
start time and deadline. Suppose there exists a request across
two billing cycles with the duration of 6 time slots between its
start time and its deadline, 2 of which are in the first billing
cycle and 4 time slots are in the second billing cycle. We will
divide it into two sub-transfers with the ratio of their demands
1 : 2. Then we treat each sub-transfer as a single transfer in
the two billing cycles. In our implementation, servers send
requests to brokers with sockets. Bulk transfer requests will
be temporarily stored in RC. At the end of each time slot, RC
sends these bulk transfer requests to the controller in batches.
Interactive requests will be forwarded to RA instantly.

3) Rate Allocator (RA): It enforces the rate allocated by
the controller for bulk transfers on physical and virtual
machines [29]–[31]. For the interactive requests received, if
the volumes are accurately predicted by TP or the actual
transmission volumes are smaller than the predicted ones,
RA will route them on the paths determined by TP. If the
actual volumes are larger than the predicted ones, where
mispredictions occur, RA will preferentially transfer data from
interactive requests, and delay the bulk transfers that share the
same paths but have the deadlines far away (see the details in
Section IV-C.1). RA sends network and transfer states to the
controller in each time slot.

C. Controller

We present the design details of the modules in controller
as follows:

1) Bulk Transfer Scheduler (BS): BS is the key module for
bulk transfer scheduling and we deploy PDA in it. Generally,
BS receives requests from RC and hands down the rate allo-
cations to RA to enforce. Considering that interactive traffic
accounts for 5-15% of the total traffic in Inter-DC WANs and it
can be largely predicted for short transmission period such as
5-minute [2], [4], TP runs to predict the volume of interactive
traffic in the near future. As services submit bulk transfer
requests independently and ISPs record the bandwidth usage in
each 5-minute interval, BS runs PDA in each scheduling period
(i.e., 5 minutes) to manage the bandwidth usage. TP predicts
the volume of interactive traffic that will flow through link
e at next scheduling period and add it to the left-hand side
of inequality (4) to require bandwidth reservation for the
incoming interactive data.

2) Error Handler (EH): EH is located inside the controller
of Butler, and is responsible for handling various types of

errors, including link failures and mispredictions of interactive
traffic. Link failure is a typical error in Inter-DC WANs. To
prevent the violation of deadlines caused by link failures, we
set the deadlines of transfers one scheduling period (i.e., 5
minutes) ahead in our scheduling. Since current techniques
such as Dionysus [32] can update the network status (e.g., rate
reallocation) in several seconds and the controller calculate the
transfer scheduling in each scheduling period, our setting is
sufficient for Butler to relieve the bad effects caused by link
failures.

Misprediction is inevitable and the unpredicted data burst
will preempt the bandwidth allocated to bulk transfers. To
mitigate it, we set a small amount of headroom on the basis
of the calculated bandwidths to absorb the traffic burst. In
the case that the headroom is not enough to handle the burst,
RA delays some bulk transfers that share the same paths. It
preferentially delays the transfer with the farthest deadline,
and repeats the procedure until the unpredicted burst and the
bulk transfers with near deadlines can be fully satisfied. If the
above procedure does not work, RA employs more bandwidth1

to guarantee the deadlines of transfers. In practice, a small
number of burst will not introduce more bandwidth cost under
the popular percentile-based charging scheme [12].

D. Prototype

We implement a prototype system of our Butler with C++
and Python. We call the advanced integer programming solver,
Gurobi Optimizer [34], to determine the bandwidth allocation.
In our prototype, the controller collects information from the
brokers located in data centers and commands these brokers
to control the data rates of transfers. The controller performs
the bulk transfer scheduling every 5 minutes. In each data
center, we implement the three modules in broker (i.e., TP,
RC and RA) with Python. TP also runs every 5 minutes to
predict interactive traffic. Then it sends the traffic volumes
of interactive requests on links to the controller. RC runs as
daemon process to collect transfer requests from applications.
It records the bulk transfer requests and sends them to the
controller in batch every 5 minutes. When interactive requests
arrive, it forwards them to RA immediately. Rate Allocator
reports the status of transfers to the controller, and receives
schedule commands from the latter. Then it enforces rate
allocations with Linux TC. RA also runs as daemon process
in each data center. We use socket programming to realize the
communications between above modules.

V. EVALUATION

In this section, we conduct extensive evaluations to test the
performance of Butler.

A. Evaluation Methodology

In our simulations, we use the Inter-DC network topology
of Google [3], which consists of 12 data centers and 19 bi-
directional links (as shown in Fig. 4). We distribute the data

1ISPs provide sufficient bandwidth and charge the data center operators
based on the actual usages [33].

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:01:54 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: COST-EFFICIENT SCHEDULING OF BULK TRANSFERS IN INTER-DATACENTER WANs 1981

Fig. 4. B4 worldwide deployment [3].

Fig. 5. Relative bandwidth costs.

centers to 6 geographical regions. The bandwidth prices are set
based on the relative bandwidth costs in [11]. We show the rel-
ative cost of bandwidth in Fig. 5. We set one day (24 hours) as
a billing cycle and adopt the popular percentile-based scheme
to charge for the bandwidth [9]. We record the traffic volumes
of each 5-minute interval, based on which we update the
charging bandwidth with the common approach as described
in [12]. The unit of bandwidth is set to 10Gbps [10]. To set the
bandwidth price properly, we refer to the relative bandwidth
cost around the world presented by CloudFlare [11], e.g., the
cost of per unit charging bandwidth in Europe is 4 units. The
bandwidth cost is calculated according to the outgoing traffic
volumes of data centers.

1) Transfer Generation: Referring to [4], [9], [15], we
generate Inter-DC transfers with a synthetic model as follows.
The arrival time of bulk transfer requests follows Poisson
distribution model with arrival rate λ per timeslot (i.e., 5
minutes). The demand of each bulk transfer follows an expo-
nential distribution with a mean of 5TB in simulation experi-
ments. The source data centers and destination data centers
of transfers are selected randomly. Besides bulk transfers,
interactive traffic is randomly generated and accounts for 5-
15% of the total traffic demand.

2) Comparing Solutions: As there are many existing Inter-
DC traffic engineering (TE) with different goals and manners,
we select the representative ones to compare with Butler. To
make a fair comparison, Butler and the comparing solutions
require no more storage resources on current systems. We
compare the performance of Butler with three TE solutions:
(1) Basic [22] selects the min-cost2 routing path to deliver
bulk transfers at desired rate, i.e., the quotient of transfer
demand divided by the maximum tolerable transfer time.
(2) SWAN [2] schedules Inter-DC transfers to maximize the

2Among all the routing paths for a pair of data centers, the summation of
bandwidth prices of links on the min-cost routing path is the least.

Fig. 6. Basic topology of the testbed.

network utilization of Inter-DC WAN. (3) Pretium3 [9], which
we modify to minimize the bandwidth cost. As Amoeba [4]
aims to meet as many deadlines of user requests as possible
with fixed bandwidths while our solution focuses on guaran-
teeing all deadlines with as little bandwidth cost as possible,
it is difficult to compare their performance. Thus Amoeba [4]
is not compared with ours.

3) Testbed Setup: As shown in the basic topology in Fig. 6,
our testbed consists of 5 hosts which act as data centers in
different geographical areas and 6 bidirectional links. Each
host is connected to others with 1000Mbps links. A host is
equipped with Intel Core i5-7500 CPU, 8GB Memory and
1G Ethernet NIC, and runs Ubuntu 16.04 64-bit version with
Linux 4.6.2 kernel. In our testbed experiment, the arrival time
of bulk transfer requests follows a Poisson distribution with
arrival rate λ per timeslot. The demand of each bulk transfer
follows an exponential distribution with a mean of 5GB. The
unit of bandwidth is set as 100 Mbps. We generate the transfers
with iperf [35]. We set billing cycle consisting of 50 time
slots. The RTT of link is set according to the geographical
distances between different areas. In our experiments, we
compare the performance of Butler with three comparing
solutions, including Basic [22], SWAN [2] and Pretium [9].

B. Performance of PDA

To begin with, we evaluate different parameter settings
of PDA to look for the optimal configurations. In Fig. 7,
we evaluate the impact of different R-Depth and R-Span.
We first evaluate the impact of R-Depth on bandwidth cost
and flow performance, where we fix the value of R-Span
to 1. As shown in Fig. 7a, when R-Depth is less than or
equal to 6, with its increase, the bandwidth cost drops up to
30.4%. However, when R-Depth exceeds 6, the bandwidth cost
remains unchanged. This indicates that PDA has achieved the
minimum cost. In Fig. 7b, we evaluate the lead time of bulk
transfers, which is defined as the deadline of a bulk transfer
minus its actual completion time. As the lead time of bulk
transfers for Butler is always non-negative, it indicates that
Butler can always meet the transfer deadlines, and a larger
lead time indicates that the transfer is completed a longer time
before the deadline. The trend is similar to that of Fig. 7a.
When the R-Depth increases from 0 to 6, the average lead
time decreases from 10.7 to 8.8, and it only changes a little
when R-Depth increases further.

3The original objective of Pretium is to maximize social welfare. It uses the
top 10% utilization values of links to approximate the true bandwidth usage.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:01:54 UTC from IEEE Xplore. Restrictions apply.

1982 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 5, OCTOBER 2019

Fig. 7. Performance of PDA.

We also evaluate the impact of R-Span with different values,
with the value of R-Depth fixed to 6 according to the above
study. When R-Span increases from 1 to 6, different from
R-Depth, the bandwidth cost increases simultaneously. In
Fig. 7c, the average bandwidth cost has increased for 23.5%
when R-Span changes from 1 to 6. It appears that, rounding
one fractional bandwidth at one time is the best strategy for
Butler. In Fig. 7d, we see that the average throughput of
bulk transfers under different settings of R-Span are almost
identical. Thus the change of R-Span has little impact on
the throughput of bulk transfers. Combined with Fig. 7a and
Fig. 7b, we conclude that adjusting R-Depth and R-Span can
reduce the bandwidth cost effectively without a significant
impact on the flow performance.

C. Butler vs. Inter-DC TE

In Fig. 8, we compare Butler with other Inter-DC TE
techniques, including Basic [22], SWAN [2] and Pretium [9].
To minimize the total bandwidth cost, Butler lowers the peak
bandwidth usage while Pretium lowers the top 10% utilization
values of links [9]. To make the results comparable, we let all
schemes guarantee the deadlines of bulk transfers. In Fig. 8a,
we compare the bandwidth costs of these schemes under
different request arrival rates. With the increase of request
arrival rate, the bandwidth costs of all schemes increase.
However, Butler has a much slower growth compared with
other schemes. Since Butler adopts our well-designed rounding
strategy to directly optimize the bandwidth, its advantage on
reducing the bandwidth cost becomes larger as the request
arrival rate increases. When bulk transfers arrive at the rate
of 40 per time slot, the bandwidth costs of Pretium, SWAN
and Basic are 61%, 97.4% and 108.7% higher than that of
Butler, respectively. As shown in Fig. 8b, the bandwidth costs
of all schemes increase over time. However, the bandwidth
cost of Butler increases slower than others. At the end of

Fig. 8. Butler vs. Inter-DC TE.

Fig. 9. Butler vs. Optimal Solutions.

running, the bandwidth costs of the four solutions are 500,
699, 1029 and 1291 units, where the cost of Butler is up to
62% lower. In Fig. 8c, the average link utilization of Butler
is 2.16x, 1.27x and 1.12x that of Basic, SWAN and Pretium,
as Butler attempts to reduce the overall bandwidth cost by
making full use of the purchased bandwidth. In Fig. 8d,
SWAN has the highest average and maximum throughput as
it aims to improve the throughput of Inter-DC flows. Basic
transfers at the desired rates, and its throughput is the least
among all solutions, no matter the average throughput or
the maximum throughput. Making full use of the purchased
bandwidth as shown in Fig. 8c, Butler achieves higher average
and maximum throughput than those of Pretium.

D. Butler vs. Optimal Solutions

In Fig. 9, we compare the scheduling of Butler with the
optimal solutions of CESBT and Relaxed-CESBT, which
are denoted as Optimal (IP) and Optimal (LP) respectively.
Optimal (LP) rounds up the fractional charging volumes in the
optimal solution of Relaxed-CESBT. We show the bandwidth
cost variations of these schemes in Fig. 9a. At the beginning of
the billing cycle, the bandwidth cost of Optimal (IP) is lower
than that of others. With the arrivals of more bulk transfer
requests, Butler schedules them in a more economic way,

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:01:54 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: COST-EFFICIENT SCHEDULING OF BULK TRANSFERS IN INTER-DATACENTER WANs 1983

TABLE III

BANDWIDTH COSTS (BASELINE = 1)

Fig. 10. Scalability of Butler.

thus its bandwidth cost increases much slower than those of
Optimal (IP) and Optimal (LP). In each time slot, Optimal (IP)
tries to minimize the bandwidth cost, which sacrifices its
capacity of accommodating future requests. At the end of the
billing cycle, the bandwidth cost of Butler is slightly lower
than that of Optimal (IP), and is up to 22.6% lower than that
of Optimal (LP). This is because PDA uses effective rounding
strategies, while Optimal (LP) simply rounds up all fractional
traffic volumes, which leads to a higher bandwidth cost. In
Fig. 9b, there exist subtle differences between the maximum
lead time of different solutions. However, for the average lead
time of bulk transfers, Optimal (LP) outperforms Butler and
Optimal (IP), as Optimal (LP) benefits from the use of more
link capacity at the cost of higher usage charge.

E. Scalability

To demonstrate the scalability of Butler, we compare it
with Gurobi Optimizer [34] using large-scale simulations.
We measure the computing time of Butler and IP Solver
under different network scales and request arrival rates. Our
measurements are conducted in a desktop, which is equipped
with Intel Core i5-7500 3.40GHz CPU, 8GB Memory, 240GB
SSD and runs Windows 10 64-bit version. In Fig. 10a, we
fix the request arrival rate to 10 per time slot. The network
topologies are randomly generated connected networks, and
the number of links increases with the number of node. We
measure the computing time of Butler and IP Solver using
the same workload. When the number of nodes grows, the
computing time of IP Solver increases exponentially. When
the network topology has 40 nodes, its computing time is
longer than 1000 seconds, which is intolerable for data center
operators. However, the computing time of Butler has a

slow growth. When there are 40 nodes in the network, the
computing time of Butler is less than 100 seconds. We evaluate
the impact of request arrival rate on the computing time of
different schemes. We fix the network topology with 30 nodes.
When the request arrival rate increases, the computing time
of IP Solver increases much faster than Butler. For example,
when the request arrival rate is 40 per time slot, the computing
time of IP Solver is 12.9x that of Butler. With the proliferation
of cloud services, Inter-DC WANs could benefit from the high
scalability of Butler on performing cost-efficient scheduling of
bulk transfers.

F. Robustness

To evaluate the robustness of Butler under different levels of
link failures and mispredictions, we set different error ratios
(ERs) and evaluate the bandwidth cost of Butler. In Butler,
the deadline of bulk transfer is set to one time slot earlier
than the actual deadline and the headroom for mitigating mis-
prediction is set based on the volume of the maximum burst
in the previous time slots. We set some links as “failed” to
simulate link failures, but guarantee the full-connectivity of the
remaining network. We manually change the size of generated
interactive transfers to simulate the misprediction errors. The
results are presented in Table III. For a certain request arrival
rate, we set the bandwidth cost as 1.0 when there is no
error (i.e., ER = 0). We present the relative bandwidth costs
under different ER and error types (ETs). With the increase of
ER, handling errors incurs higher bandwidth cost, while the
increase in the cost is always less than 21% in our simulations.
It indicates that Butler can efficiently handle the errors during
scheduling. Under the same settings of ER, handling link
failures incurs more bandwidth costs than that of handling
mispredictions in most cases. This is because link failures will
force the controller to select new routing paths for the affected
transfers, while mispredictions can be mitigated or eliminated
by the headroom and periodic calculations of the controller.
From the above results, we conclude that Butler is a robust
solution for cost-efficient scheduling of bulk transfers.

G. Testbed Experiments

In this subsection, we first measure the accuracy of our
enforcement. Then we measure the bandwidth cost under
different request arrival rates and the network utilization of
each time slot for different solutions.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:01:54 UTC from IEEE Xplore. Restrictions apply.

1984 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 5, OCTOBER 2019

Fig. 11. Deviation between schedules and testbed results.

In Fig. 11a, the ratio of measured throughput to the sched-
uled throughput is between 0.95 and 1.05. It shows that the
measured throughput matches the scheduled ones. In Fig. 11b,
for all bulk transfers, the difference between the scheduled
completion time and measured completion time is less than
5 seconds, which is negligible compared with the long duration
of a time slot in the unit of minutes. We infer that, these
differences are caused by iperf, which copies data between
user space and kernel space, and TC, which needs time to
perform rate limitation on NICs.

Fig. 12a shows the similar changing trend as shown in
Fig. 8a. As the request arrival rate increases, the bandwidth
costs of all solutions increase. Good rounding strategy and
direct optimization of peak bandwidth usage help Butler
achieve the lowest bandwidth cost among the four solutions.
In Fig. 12b, we measure the network utilization of each
time slot when the request arrival rate is 40 per time slot.
Benefited from its cost-efficient scheduling strategy, Butler
has a higher network utilization than others in most time
slots, which increases the average network utilization 1.4x.
The result shows that Butler and Pretium make full use of
the purchased bandwidth to reduce the overall bandwidth
cost and achieve similar network utilization. Despite that
SWAN attempts to improve the throughput and network link
utilization, to guarantee the deadlines of transfers, its network
utilization is affected and lowered. SWAN and Basic schedule
bulk transfers without considering the delivery cost, thus they
have higher bandwidth costs than Butler and Pretium.

VI. RELATED WORK

There are many recent efforts on Inter-DC traffic engineer-
ing and bulk transfer scheduling in Inter-DC WANs, but none
of them can solve CESBT directly.

Benefitted from the emerging SDN technologies, SWAN [2]
and B4 [3], [7] drive links in Inter-DC WANs to near
100% utilization and balance the capacity against applica-
tion priority/demands. Tempus [16] appropriately packs long-
lived transfers across network paths and future time steps. It
maximizes the minimal delivered fraction of transfers before
deadlines and achieves the fairness among transfers. These
solutions work with fixed bandwidth. They neither guarantee
service deadline nor consider the transmission cost of Inter-DC
WANs. In contrast, Butler takes into account the bandwidth
costs and schedules bulk transfers with guaranteed deadlines.

Amoeba [4] takes one step further by accommodating more
user requests with guaranteed-deadlines under the limits of

Fig. 12. Testbed experiments.

bandwidth. Similar to SWAN [2] and B4 [3], it has not consid-
ered the bandwidth cost incurred by Inter-DC transfers [36]. It
accepts more user requests to fully utilize the fixed bandwidth
while Butler considers the transmission cost and aims to serve
requests with the minimal bandwidth cost.

There are some work using pricing schemes to optimize the
cost-efficiency of Inter-DC WANs. For example, Pretium [9]
combines dynamic pricing and TE to maximize the social
welfare. Tenants sometimes have to adjust their traffic and
compromise their service quality to not violate the payment
agreement with the cloud providers. However, Butler sched-
ules Inter-DC transfers without requiring complicated pricing
scheme to lower bandwidth cost and guaranteeing deadlines.

OWAN [15] schedules the bulk transfers in Inter-DC WANs
by dynamically changing the network-layer topology with
optical devices reconfigured. It provides best-effort delivery
service but can not guarantee the deadlines of bulk transfers,
while Butler performs cost-efficient scheduling under the
condition of meeting transfer deadlines.

Many solutions attempt to make full use of the purchased
bandwidths in Inter-DC WANs. Metis [6] is a framework
that enables cloud providers to earn more service profit, i.e.,
service revenue minus service cost, in geo-distributed clouds
by declining some user requests and efficiently scheduling the
accepted ones. It can benefit from scheduling accepted user
requests with our algorithm. NetStitcher [8] and Postcard [22]
use the store-and-forward approach in the scheduling of bulk
transfers. They delay the large data transfers and send them
at non-peak hours to fully utilize the leftover bandwidth.
They require data centers to have large space to temporarily
store bulk data. Different from these schemes, Butler aims
to achieve cost-efficient scheduling of bulk transfers with
guaranteed deadlines and minimum bandwidth cost, while not
requiring extra storage space.

VII. CONCLUSION

In this paper, we focus on the cost-efficient scheduling of
bulk transfers (CESBT) in Inter-DC WANs while guaranteeing
their deadlines. Different from the previous work that may
degrade service performance or introduce extra overhead to
achieve high network utilization, we take into account the
variation of bandwidth price and the deadline requirements
of services in our problem formulation. We formulate the
problem of CESBT and prove its NP-hardness. To solve it
with a guaranteed approximation ratio in polynomial time, we
propose the progressively-descending algorithm (PDA) based

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:01:54 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: COST-EFFICIENT SCHEDULING OF BULK TRANSFERS IN INTER-DATACENTER WANs 1985

on relax-and-round and prove its approximation ratio. We
apply PDA in the bulk transfer scheduler, Butler, and build a
testbed to evaluate the effectiveness of our scheme. Extensive
simulation and testbed experiments demonstrate the advantage
of our scheme in significantly cutting down the bandwidth cost
while guaranteeing bulk transfers to meet their deadlines.

REFERENCES

[1] S. Liu and B. Li, “Stemflow: Software-defined inter-datacenter over-
lay as a service,” IEEE J. Sel. Areas Commun., vol. 35, no. 11,
pp. 2563–2573, Nov. 2017.

[2] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” in Proc. ACM SIGCOMM, 2013, pp. 15–26.

[3] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” in Proc. ACM SIGCOMM, 2013, pp. 3–14.

[4] H. Zhang et al., “Guaranteeing deadlines for inter-datacenter transfers,”
in Proc. ACM EuroSys, 2015, Art. no. 20.

[5] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. ACM SIGCOMM, 2015,
pp. 123–137.

[6] Z. Yang et al., “Towards maximal service profit in geo-distributed
clouds,” in Proc. IEEE ICDCS, Jul. 2019, pp. 442–452.

[7] C.-Y. Hong et al., “B4 and after: Managing hierarchy,
partitioning, and asymmetry for availability and scale in google’s
software-defined WAN,” in Proc. ACM SIGCOMM, 2018,
pp. 74–87.

[8] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-datacenter
bulk transfers with netstitcher,” in Proc. ACM SIGCOMM, 2011,
pp. 74–85.

[9] V. Jalaparti, I. Bliznets, S. Kandula, B. Lucier, and I. Menache,
“Dynamic pricing and traffic engineering for timely inter-datacenter
transfers,” in Proc. ACM SIGCOMM, 2016, pp. 73–86.

[10] I. Takanori, “Large-capacity optical transmission technologies support-
ing the optical submarine cable system,” NEC Tech. J., vol. 5, no. 1,
pp. 8–12, Feb. 2010.

[11] R. Nitin. Bandwidth Costs Around the World. Accessed: Aug. 17, 2016.
[Online]. Available: https://blog.cloudflare.com/bandwidth-costs-
around-the-world/

[12] D. K. Goldenberg, L. Qiuy, H. Xie, Y. R. Yang, and Y. Zhang,
“Optimizing cost and performance for multihoming,” in Proc. ACM
SIGCOMM, 2004, pp. 1–14.

[13] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” ACM SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, 2009.

[14] W. Li et al., “Cost-minimizing bandwidth guarantee for inter-datacenter
traffic,” IEEE Trans. Cloud Comput., vol. 7, no. 2, pp. 483–494,
Jun. 2016.

[15] X. Jin et al., “Optimizing bulk transfers with software-defined optical
WAN,” in Proc. ACM SIGCOMM, 2016, pp. 87–100.

[16] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula, “Calendaring
for wide area networks,” in Proc. ACM SIGCOMM, 2014, pp. 515–526.

[17] Y. Zhang et al., “BDS: A centralized near-optimal overlay network
for inter-datacenter data replication,” in Proc. ACM EuroSys, 2018,
Art. no. 10.

[18] Y. Lin, H. Shen, and L. Chen, “EcoFlow: An economical and deadline-
driven inter-datacenter video flow scheduling system,” in Proc. ACM Int.
Conf. Multimedia, 2015, pp. 736–737.

[19] H. H. Liu, Y. Wang, Y. R. Yang, H. Wang, and C. Tian, “Optimizing cost
and performance for content multihoming,” in Proc. ACM SIGCOMM,
2012, pp. 371–382.

[20] M. Ghasemi, P. Kanuparthy, A. Mansy, T. Benson, and J. Rexford,
“Performance characterization of a commercial video streaming service,”
in Proc. ACM IMC, 2016, pp. 499–511.

[21] P. Mattew. The Relative Cost of Bandwidth Around the World. Accessed:
Aug. 26, 2014. [Online]. Available: https://blog.cloudflare.com/the-
relative-cost-of-bandwidth-around-the-world/

[22] Y. Feng, B. Li, and B. Li, “Postcard: Minimizing costs on inter-
datacenter traffic with store-and-forward,” in Proc. IEEE ICDCSW,
Jun. 2012, pp. 43–50.

[23] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-defined wide area
network (SD-WAN): Architecture, advances and opportunities,” in Proc.
IEEE ICCCN, Jul. 2019.

[24] Z. Zhang et al., “Optimizing cost and performance in online service
provider networks,” in Proc. USENIX NSDI, 2010, pp. 1–15.

[25] H. Shi et al., “STMS: Improving MPTCP throughput under heteroge-
neous networks,” in Proc. USENIX ATC, 2018, pp. 719–730.

[26] C. Raiciu et al., “How hard can it be? Designing and implementing a
deployable multipath TCP,” in Proc. USENIX NSDI, 2012, pp. 399–412.

[27] D. Bienstock, S. Chopra, O. Günlük, and C.-Y. Tsai, “Minimum cost
capacity installation for multicommodity network flows,” Math. Pro-
gram., vol. 81, no. 2, pp. 177–199, 1998.

[28] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, 1998.

[29] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
in Proc. ACM SIGCOMM, 2013, pp. 435–446.

[30] K. Nagaraj et al., “NUMFabric: Fast and flexible bandwidth allocation
in datacenters,” in Proc. ACM SIGCOMM, 2016, pp. 188–201.

[31] K. He et al., “AC/DC TCP: Virtual congestion control enforcement for
datacenter networks,” in Proc. ACM SIGCOMM, 2016, pp. 244–257.

[32] X. Jin et al., “Dynamic scheduling of network updates,” in Proc. ACM
SIGCOMM, 2014, pp. 539–550.

[33] 95th Percentile Bandwidth Metering Explained and Analyzed. [Online].
Available: https://www.semaphore.com/

[34] Gurobi Optimizer. [Online]. Available: http://www.gurobi.com/
[35] Iperf. [Online]. Available: https://iperf.fr/
[36] W. Li, X. Zhou, K. Li, H. Qi, and D. Guo, “More peak, less differ-

entiation: Towards a pricing-aware online control framework for inter-
datacenter transfers,” in Proc. IEEE ICDCS, Jun. 2017, pp. 2105–2110.

Zhenjie Yang received the B.E. degree in network-
ing engineering from the Dalian University of Tech-
nology, Liaoning, China, in 2015. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Technology, Tsinghua Uni-
versity, Beijing, China. His research interests include
data center networking and cloud computing.

Yong Cui received the B.E. and Ph.D. degrees in
computer science and engineering from Tsinghua
University, China, in 1999 and 2004, respectively.
He is currently a Full Professor with the Computer
Science Department, Tsinghua University. He has
published over 100 papers in the refereed confer-
ences and journals with several best paper awards.
He has coauthored seven Internet standard docu-
ments (RFC) for his proposal on IPv6 technologies.
His major research interests include mobile cloud
computing and network architecture. He served or

serves on the editorial boards of the IEEE TPDS, IEEE TCC, and the IEEE
Internet Computing. He is currently the Working Group Co-Chair in the IETF.

Xin Wang received the B.S. and M.S. degrees in
telecommunications engineering and wireless com-
munications engineering from the Beijing University
of Posts and Telecommunications, Beijing, China,
and the Ph.D. degree in electrical and computer
engineering from Columbia University, New York,
NY, USA. She is currently an Associate Professor
with the Department of Electrical and Computer
Engineering, State University of New York at Stony
Brook, Stony Brook, NY, USA. Before joining the
State University of New York at Stony Brook, she

was a Member of Technical Staff in mobile and wireless networking at Bell
Labs Research, Lucent Technologies, NJ, USA, and an Assistant Professor
with the Department of Computer Science and Engineering, State University
of New York at Buffalo, Buffalo, NY, USA. Her research interests include
algorithm and protocol design in wireless networks and communications,
mobile and distributed computing, as well as networked sensing and detection.
She has served in the executive committee and technical committee of
numerous conferences and funding review panels, and serves as an Associate
Editor for the IEEE TRANSACTIONS ON MOBILE COMPUTING. She received
the NSF Career Award in 2005 and the ONR Challenge Award in 2010.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:01:54 UTC from IEEE Xplore. Restrictions apply.

1986 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 5, OCTOBER 2019

Yadong Liu received the B.E. degree in software
engineering from the Beijing Institute of Tech-
nology, Beijing, China, in 2017. He is currently
pursuing the M.S. degree with the Department of
Computer Science and Technology, Tsinghua Uni-
versity, Beijing. His research interests are in the
areas of data center networking.

Minming Li received the Ph.D. degree. He is cur-
rently an Associate Professor with the Department of
Computer Science, City University of Hong Kong.
His research interests include algorithms design
and analysis, combinatorial optimization, schedul-
ing, key management, and algorithmic game the-
ory. He is the winner of the City University of
Hong Kong Teaching Excellence Award during
2011–2012.

Shihan Xiao received the B.Eng. degree in
electronic and information engineering from the
Beijing University of Posts and Telecommunica-
tions, Beijing, China, in 2012, and the Ph.D. degree
from the Department of Computer Science and
Technology, Tsinghua University, China. He is cur-
rently a Senior Engineer with Huawei 2012 Net-
Lab. His research interests include machine learning
in networking, data center networking, and cloud
computing.

Chuming Li received the B.Eng. degree in network
engineering from the University of Electronic Sci-
ence and Technology of China, Chengdu, China,
in 2017. He is currently pursuing the Ph.D. degree
with the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing, China. His
research interests include data center networking and
cloud computing.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:01:54 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

